Jun 272012

Recently I was going through the archives of posts by Kalen Delaney blog and I came across very interesting post Did you know? — Altering the length of a fixed-length column.  This article gives information how SQL Server is wasting space when you alter a fixed length column and increase its length.

It is interesting so I wanted to take a closer look on this and take a look on the physical db pages to see what happens and to see how the data are stored after alter is done.

Test data preparation and initial view of the data

So first let’s prepare a testing table with some testing data.

Now if we take a look on the columns information in metadata tables using Kalen’s query to sys.system_internal_partition_columns we can see the offsets of the table columns.

As we can see, the physical order is the order in which the columns were defined using the CREATE TABLE statement.

Once we have the data in the table, let’s take a look on how the data are stored. The below query will work only on SQL Server 2008+ and is using undocumented virtual column %%physloc%% which provides information about rows physical location in database and undocumented function sys.fn_PhysLocCracker, which cracks the physical location to human readable FileID, PageID and SlotID.

Let’s take a look on the first physical page 168.

The partial results are below

We can see, that the physical storage corresponds to the metadata stored in the system table sys.system_internal_partition_columns.

Altering the column length and analyzing impacts

Now let’s alter the table and increase the length of Col1 to 3000 characters and take a look what happens.

If we take a look on the sys.system_iternal_partition_columns we will see following:

We can see, that the offset of the Col1 has changed and the Column was moved to the end of the record. From here we can see, that the original 2000 bytes were wasted. If we take a look on the physical page 168 as above, we will see, that there is no change in the physical page as the this change to the column is metadata change only.

Impact on new records

So let’s take a look what impact this have on new records added to the table.

From the results we can see, that the first 4 records originally inserted are occupied only two pages as two records were stored per database page. After the update we can see that each single record is occupied its own page. This is due to the fact that the record length has increased not only by the 1000 characters by which the length of the Col1 was modified but also the original 2000 bytes were wasted. there fore the data length on the page increased from 3008 bytes to 6008 bytes.

Now let’s take a closer look on the physical page. For example the first page occupied by the newly inserted data  (page 175).

Partial results of the DBCC command are here:

From the output above we can see, the now on the physical page, there is a Column 67108865 (DROPPED) following the Column1 and Column2 has physically moved to the end of the record at offset 0xbc4 (3012).  Also from the page dump we can see that the space from the offset 0x8 to 0x7d7 is containing a mess and that those 2000 bytes are wasted.

As we can see, the original query to sys.system_internals_partition_columns doesn’t show the Column with ID 67108865 (DROPPED). It’s because it uses join to the sys.columns and the DROPPED column is not part of the table, but is par tof the partition. If we use the query without join to the sys.columns it will be shown also in the query output.

It Seems that the dropped columns have IDs starting from 67108865 and the numbers increase as there are more dropped columns. Also the DROPPED columns have flag is_dropped = 1.

Multiple updates of the column size

In previous examples we took a look on the update to a single column and in Delaney’s post you can see the result if we want to update multiple column. In case we try to multiple columns, space allocated for all the original columns is dropped and new space allocated. But what happens if we update the same column multiple times? Let’s make a simple test.

From the example we can see, that each change which increase the fixed column length causes that the original column space is dropped and additional space is allocated.

Recovering the wasted space

It is great, that extending the column width of fixed length column is a metadata only operation as it is very quick and avoids blocking especially on large tables, but on the other side as we can see, this can cause a significant space wasting.

In case there will be less new inserts into the table than the current about of rows we do not need to take care about the wasted space much (from the point of wasted storage space) as the metadata change didn’t affect the current records and on the current records we are saving the space as we have extended the record length and only the new records inserted are wasting the space.

On the other side, if we know there will be a lot of inserts and reads of the newly inserted records, than it’s a good idea to recover the wasted space as the data will consume more space and further reads will have to read more unnecessary data.

In the comments to the original post there are some suggestions how to resolve the problem.

From my perspective if the table is already clustered, we do not need to crop and recreate the clustered index, but it is enough to REBUILD the index. The rebuild operation will reorder the data and free up the wasted space and also write the original data with new record length.

In the case of heap, creating and dropping clustered index will be quite costly operation which will move the data twice. On small tables this doesn’t matter but on larger amounts of data it will be better to do simple SELECT * INTO newTable from aTable and than simply drop the original table and rename the new one to the original one.

We can see, that the new table has no wasted space and all pages are now allocated by two records.

Of course if we there are some foreign keys and indexes than those will have to be recreated. Anyway this will cost much less I/O and processing power than creating and dropping the clustered key


As we can see fro the examples above, altering the fixed column length and increasing it, even it’s metadata  only operation causes, that the originally allocated space is dropped and new space is allocated in the row for all newly inserted or updated rows in the table. So be carefull when altering a fixed length columns especially when you are doing multiple alters to a single column as significat space can be wasted. Knowing the fact that the dropped columns have flag is_dropped = 1 in the sys.system_internals_partition_columns, we can use a below query to list all the tables containing DROPPED columns with wasted space.

 Leave a Reply

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code class="" title="" data-url=""> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> <pre class="" title="" data-url=""> <span class="" title="" data-url="">